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Several examples of incipient blow-off phenomena described by the com- 
pressible similar laminar boundary-layer equations are considered. An asymp- 
totic technique based on the limit of small wall shear, and the use of a novel form 
of Prandtl’s transposition theorem, leads to  a complete analytical description of 
the blow-off behaviour. Of particular interest are the results for overall boundary- 
layer thickness, which imply that, for a given large Reynolds number, classical 
theory fails for a sufficiently small wall shear. A derivation of a new distinguished 
limit of the Navier-Stokes equations, the use of which will lead to uniformly valid 
solutions to  blow-off type problems for Re+ 00, is included. A solution for 
uniform flow past a flat plate with classical similarity type injection, based on 
the new limit, is presented. It is shown that interaction of the injectant layers 
and the external flow results in a favourable pressure gradient, which precludes 
the classical blow-off catastrophy. 

1. Introduction 
An interesting aspect of the study of flows with mass addition involves the 

phenomenon of blow-off. Here, under conditions which depend upon the specific 
configuration of the system being studied, it is possible to  develop a region 
of vanishingly small wall shear, and ultimately observe a form of boundary- 
layer separation. In  general, the occurrence of this condition is determined by 
the overall interaction of the mass flow distribution of injected fluid with the 
prescribed external flow (and hence the pressure gradients involved). The added 
fluid, assumed to be injected normal to the surface, can be turned toward the 
direction of the external flow by favourable pressure gradients and/or viscous 
forces. Should the totality of these effects become small near the surface, so that 
injected fluid streamlines are turned only slightly, the wall shear is small, and 
blow-off may be observed. 

The prototype blow-off analysis, performed first by Schlichting & Bussmann 
(1943), but more definitively by Emmons & Leigh (1954), describes uniform flow 
past a flat plate with an injection distribution proportional to x-3 in terms of 
classical boundary-layer theory. The Blasius equation with injection boundary 
condition [f” +f’ = 0, ~ ‘ ( c o )  = 1, f(0) = - C, f’(0) = 01 was solved numerically 
with the result that as C --f C,, = 0.87574 ..., the wall shear f”(0) -+ 0. Direct 
numerical calculation becomes increasingly more difficult, because the limiting 
condition off”(0) = 0 implies that all the derivatives off(y) near the wall vanish. 
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As the injection rate approaches the critical value, the region of strong shear 
moves away from the wall causing a dramatic thickening of the boundary layer. 
In  fact, most of the boundary layer is composed of a region of injected fluid in 
which the shear is very small. Above this is a relatively thin strong shear layer, 
which in the limit C --f C, becomes identical to the free mixing layer described by 
Lock (1951). The foregoing asymptotic properties of this famous numerical 
calculation have been described analytically by Kassoy (1970). 

Physically, the blow-off phenomenon described in terms of boundary -layer 
theory is directly attributable to the mass addition effect (in distinction to the 
distributed momentum), because there is neither transverse inertia nor viscous 
effect associated with the fluid in classical boundary-layer theory (changes in 
the transverse velocity are determined strictly from mass conservation). The 
injected fluid simply fills the region near the wall, pushing the shear layer away. 
The characteristic length of the latter ultimately becomes smaller than the 
thickness of the former, and hence the viscous effect near the wall vanishes. 

In  the case of injection values larger than C, it is clear that a pressure force 
must be available to assist the viscous effect in turning the injected fluid. 
Pretsch (1944), and subsequently Acrivos (1962), Watson (1966), Aroesty & 
Cole (1967), and Kubota & Fernandez (1968) developed solutions to the Falkner- 
Skanequations (f”’+ff”+~(l-f’2) = O,f’(m) = l , f ( O )  = -C,f‘(O) = 0), or the 
compressible analogue for large values of C, and /3 = O(1); so-called hard 
blowing. The calculations in the latter references are based on a matched asymp- 
totic expansion scheme for the limit C + 00. An inner region of small shear near 
the wall is described basically in terms of the reduced form of the momentum 
equation, ff” +p(1 -f’2) = 0 (or its compressible analogue), which satisfies only 
the boundary conditions at the wall. In  this inviscid rotational flow, the applied 
positive pressure force alone represented by /3 is responsible for turning the flow 
almost entirely toward the external flow direction. In  fact, for the incompressible 
problem it was shown by Pretsch (1944) that the inner solution actually satisfies 
the external boundary condition. In  general, however, an outer shear layer 
solution is necessary to provide a transition from the inner solution to the pre- 
scribed external boundary condition. In this outer layer both viscous and pressure 
forces combine to complete the required turning effect. The definitive analysis 
of Kubota & Fernandez (1968) is based on the use of the modified von Mises 
transformation, wherein the solution is developed in the form of f’ = g(f). 
However, several salient features of the flow are most usefully described by a 
solution in the original similarity variables f = f(y). I n  appendix A of the 
current work the problem considered by Kubota & Fernandez is rederived 
briefly directly from the original equations. The technique which enables one to 
perform this calculation involves the use of purely translational asymptotic 
transformations described by Kassoy ( 1970). (Such transformations, it should 
be pointed out, are simply extensions of Prandtl’s transposition theorem.) 
The results are useful for describing the thickness and location of the inner and 
shear layers, respectively, in an explicit fashion. 

Insofar as similarity analysis is concerned, there remains the problem of in- 
jection rates of finite size but larger than the critical value; C = O(1) > C,. One 
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may infer from the previous discussion that a favourable pressure gradient, 
compatible with the assumption of small wall shear, must be available to help 
turn the flow. Thus, the present paper is concerned with the compressible similar 
laminar boundary-layer equations with finite values of injection larger than the 
critical value, when the wall shear is small. The solution is constructed in terms 
of an asymptotic analysis based on the small parameter f”(0) = e, wherein the 
relevant pressure gradient is developed. Alternatively, one could prescribe a 
small value of p as the parameter, and seek an expression for the wall shear. 

The mathematical description of the flow involves an inviscid rotational inner 
layer, above which lies a relatively thinner viscous shear layer. I n  the former 
region, pressure forces alone are responsible for turning the injected fluid. The 
solution here (inner) is valid only to that distance from the wall where f = - C,. 
Beyond that distance, in the outer region, it is found that Lock’s mixing-layer 
solution provides the basic description. The relationship between the two regions 
is described in terms of the aforementioned translational transformation, the 
specific form of which is determined in the course of analysis. The results of the 
calculation provide a transitional solution valid between the classical blow-off 
solution exemplified by Kassoy (1970), in which the fundamental describing 
equations are basically viscous in nature, and the hard-blowing calculation, in 
which the inviscid rotational layer plays a major role. Thus, the present work 
describes the manner in which the new layer develops as a function of the injec- 
tion rate C. The results also confirm Nickel’s (1958) assertion that separation 
(f”(0) = 0) cannot occur in any accelerated flow of the type considered here. 

Perhaps the most interesting result to be obtained from the analysis is the 
overall boundary-layer characteristic thickness, which is found to1 be of 
O( [e Re]-*), where E is the order of the wall shear. Hence, for a given large Reynolds 
number, a sufficiently small wall shear implies that the characteristic dimension 
is much larger than that of classical boundary-layer theory, O(Re4).  It follows 
that the analysis, based as it is on classical boundary-layer theory (Re -+ oo), 
is not uniformly valid in the limit e +- 0. This difficulty, which arises as a result 
of the multiple limit nature of the problem, can be resolved by constructing a new 
distinguished limit of the Navier-Stokes equations based on Re -+ 03 alone. The 
development is described in appendix B for the special case of incompressible 
uniform flow past a flat plate from which fluid is being injected with an arbitrary 
distribution. A solution is presented for the case w, = C/(2x)*, where C > C,,. 

2. Mathematical system 
The formal describing system for compressible similar fist-order laminar 

boundary-layer flow with mass addition may be written in the form, 

(1 a-d) 
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where the dependent variables f(7) the stream function, g(7) the enthalpy, and 
the independent similarity variable 7 have the usual definitions (Moore 1964). 
In order to  consider the mass-addition problem when the wall shear is small, it  
is convenient (although it would appear arbitrary at  this juncture) to divide 
the system in (1) into two parts, by means of the similarity form of Prandtl's 
transposition theorem. The procedure outlined in $2 of Kassoy (1970) may be 
used to develop ikst an 'inner' system, in which the independent variable is 7. 
This system is to satisfy only the wall boundary conditions in (lc),  and the 
additional condition of small wall shear. Thus, 

( 2  a-c) 
9(f[71) = 07 

Jwrl)  = 07 
f = - C ,  f ' = O ,  f " = q  g = g ,  at 7 = 0 ,  

where E < 1, and C = 0(1) > C,. The pressure gradient parameter ,!?, ordinarily 
treated as a prescribed quantity, will be considered as an eigenvalue subject to 
compatability with the additional small wall shear condition. An estimate of 
the asymptotic behaviour of ,!? may be inferred from the notion that near the 
wall the pressure force is the primary causative agent in turning the injected 
fluid which results in a shear stress. Hence, it seems likely that in the limit E -+ 0, 
P(B)  -+ 0 at some asymptotic rate. It should be noted that this result is in contra- 
distinction to that in Kubota & Fernandez (1968), wherein /? = O( l), even though 
the wall shear is small. The difference is attributable to the extreme magnitude of 
the injection rate in the hard-blowing problem implied by the limit C + CO. 

If indeed / ? ( E )  is an asymptotiaally small function of E ,  then when the limit 
process, E -+ 0 (7 fixed), is applied to the 'inner' system in (2), the pressure 
gradient term is absent from the reduced system. However, if values of C > C, 
are to be considered, the pressure effect is absolutely essential. To this end, the 
application of the stretching transformation, 

= 4 4  F ( 4  =f(7),  G ( 4  = g(7), (3) 

in ( 2 )  leads to the system, 

dF"'+ FF" + (PIE) (G - E F " ~ )  = 0, 

dG"+FG' = 0, 

F = - G ,  F " =  0, F""= 1, G = g ,  at  x =  0, 

which is a distinguished limit that provides a relevant description of the wall 
region. According to (3), this wall region has a large characteristic length in 7 of 
O(s-*). Equation (4a) implies that the viscous effect e * P ,  is smaller than the 
largest inertial contribution. Furthermore, the required balance of inertia and 
pressure forces leads to the conclusion that /3 = O(s), verifying the earlier 
estimate. 

The outer system, derived by applying the similarity form of Prandtl's trans- 
position theorem, 

s = Y - A ( € ) ,  ( 5 )  
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=w [sl) = 0, to (l), is 

(6a-d) 

Here the new condition in (6c) is used to indicate that s = 0 represents the 
dividing streamline. The transformation in (5), wherein h(e)  is found to be a large 
positive asymptotic function of e, is purely translational in nature. Since z is 
the more appropriate inner variable, it is useful to combine (3) and ( 5 )  in the form 

s = (X-e~a(E) ) /~ * .  (7) 
The form of (7) may be interpreted to mean that the outer layer, with a 

characteristic extent of O(et),  lies above a relatively thicker inner layer of 
O(1) in the z plane, or O(e-*) in the 7 plane. Application of the limit process, 
e + 0 (z  fixed), implies that the z plane is reached from the s plane by letting 
s -+ - co. Similarly, the use of the limit process, e -+ 0 (s fixed), indicates that the 
s plane is reached from the x plane if z -+ €*A(€). These limit-process concepts are 
useful for constructing the matching conditions between the wall region solution 
and the outer region, which replace the missing boundary conditions in (4) and (6). 

Formal solutions to the problem defined by (4)-(7) are to be constructed in 
terms of matched asymptotic expansions. Those for the wall region of the general 
form 

are defined by the limit process, E -+ 0 (z fixed), whereas the outer expansions, 

@a) &(z;  e)  N I: Pn(E) &n(z), lim Pn+l/Pn = 0, 
n=O €-to 

ds; €1 N Z ~ n ( e )  qn(s),  lim Yn+llYn = 0, ( 8 b )  
a=O E+O 

are defined by e -+ 0 (s fixed). The asymptotic sequences must be determined. 
It is also necessary to define asymptotic expansions for the unknown parameters, 

where Kn and k, are constants that must be determined. Finally, the matching 
procedure will be carried out in terms of 

lim [&(z[s; el; 8) N q(s; e)] .  (10) 
E - t O  

3. Asymptotic analysis 
The wall layer 

When the expansions in ( sa) ,  (9a) are used in (4), and terms of similar order 
are gathered, it is found that pn = &, n = 0,1,2,  . ... The resulting sequence of 
systems to second order is: 
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FoP~+F;(Fl+F~+KoGl+KIGo = 0, q ( O )  = F;(O) = Pi(0) = 0; 

FoG;+GAFl+Gi = 0, G,(O) = 0;  

(13% b )  

Each of these sets of equations, third-order in derivatives w/r  to x ,  and containing 
an eigenvalue K,, satisfy four boundary conditions implying completely defined 
systems. 

Wall-layer solutions 
The system in (1 1) describes a basically inviscid rotational flow, whose dynamics 
are determined by a balance of pressure and inertia terms. So long as Fo + 0, 
(11 b) implies that GA = 0,  or Go = g,. Substitution of this result into (lla), and 
use of the wall-shear boundary condition, leads directly to  KO = Clg,. Finally, 
the closed form implicit solution is 

(14a) 

I F o F ~ + F ~ F 2 + + l F ~ + F ~ + K o ( G , - F ~ 2 )  +KIGl+K,Go = 0; 

F,(O) = I q O )  = H’L(0) = 0, 

FoGi+GAFz+FIG;+G; = 0;  G,(O) = 0. 

z = (nC/2)* erf (In4 [C/ - Fo]). 

It is‘also useful to note that 
FA = (2C In [C/ - Fo])6, 

F i  = -C/Fo. 

These lowest-order results may now be used in (12). It follows that G, = 0, K ,  = 0, 
and that the reduced form of (12a) is 

; 
CFl CFA p”-- = -~ 
F$ Z q O )  = q ( 0 )  = 0. 

The particular solution to this equation can be constructed by use of variation 
of parameters, once it is noticed that the homogeneous solutions are Fll = FA, 
and F12 = Z F ~  - Fo. Application of the boundary conditions leads to a completely 
defined result for Fl in quadrature form : 

Finally, the results in (14) and (15) may be utilized in (13) with the ultimate 
result that G, = 0, K ,  = - l/g,Cz and 

the solution of which could also be developed in quadrature form. It may be 
surmised from these results that the wall layer is a constant enthalpy field 
to all small algebraic orders in B .  Even for the relatively small injection rates 
considered here, there is absolutely no heat transfer to the wall. 

To second order, the pressure gradient eigenvalue has the form 
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If the small parameter in the problem is thought of as /3 rather than e, the 
asymptotic expansion in (16) may be inverted to show that 

f"(0) = 8 N q,p/c+gp/lC5+ ... , (17) 

the leading term of which is identical in functional form to the result of Kubota 
& Pernandez (1968). It appears that, quite generally, cold walls, small pressure 
gradients, or large injection rates will lead to incipient blow-off phenomena, and 
vanishing heat transfer rates. 

The solutions for P and G, containing no undetermined constants, are fully 
specified. Hence, their behaviour must be examined carefully to determine where 
the approximations, inherent in the description of the wall layer, fail. Except 
for the special case of g, = 1, the form G = g, will not satisfy the external boundary 
condition, implying the existence of a thermal transition layer somewhere in 
the field. The nature and location of this layer will be more fully discernible 
after an investigation of the stream-function behaviour. It may be observed, 
from (14) and (15), that P increases from the wall value - C with distance from 
the wall. An examination of ( l la)  will show that a singularity occurs when 
Fo+ 0-; aocording to (14a), the latter happens when x + (nC/2)*. In  fact, a 
comparison of the neglected viscous term in (4a),  E@'I(I with the inertia term 
FOB': shows that they are of the same order when Po = O(dln4 1 / ~ )  or when 
Fh = O(ln* I/€). This result indicates that the wall region solution can in no way 
satisfy the external boundary condition, which in the z plane can be written 
as Ph(x + 00) = e-3. This value is much larger than the value of Ph in the region 
where the wall-layer solution fails. 

A further elucidation of this matter may be obtained by briefly examining the 
outer momentum equation in (6a) in the limit, E -+ 0. Recalling that ,8 = O(e), 
the limiting form is the Blasius equation. Since the wall shear is small, it is 
reasonable to expect the asymptotic form of the outer solution (for s + - co) to 
indicate a vanishing shear. Hence, it appears likely that the basic outer stream- 
function solution is identically Lock's mixing layer, where f(s -+-a) - - C,. 
Then the transformation f(s) = P(x) implies that the wall region solution should 
be truncated at  the value of x ,  x* = (.rrC/S)t erf (In* C/C,), where P = - C,, rather 
than continuing toward x = (nC/2)4, where P + 0-. If this conjecture is correct 
(and it will be shown to be so), then, over the relatively large distance q* = z*/e4, 
the weak pressure gradient has managed to turn the flow very gradually, so that 
to lowest orderf(q*) = - C,, andf'(T*) = e*(2Cln C/C,)*. The latter result implies 
that the x-wise velocity u = f ' ( q )  is still quite small. The remaining transition 
to the external flow occurs in the outer shear layer, which must be considered 
in detail. 

An initial estimate of the magnitude of A(€),  the translation parameter in ( 5 )  
and (9b),  can be ascertained from the fact that the wall region extends to 
y* = z*/s*. This implies that the outer layer is translated away from the wall by a 
distance approximately O(e-a), or that, as a first approximation, 

A(€)  - koa,(E) = x*/& 

It follows from (7) that s = (z  - x*)/e4 - a,(€) k,. 
n=l 
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It should be noted that, in terms of the x plane, the origin of the outer layer s = 0 
is located a t  

2 = z* + €4 c a,(€) k,, 
n=l 

which, for physical reasons if no other, must be slightly larger than x * .  Hence, a t  
least k, > 0. 

The form of the wall-layer solution to be used in the matching condition can 
now be constructed by interpreting (10) to mean that 

co d,El(z*) ( z  - Z*)” 
f(s +-co) N F(2 -+ 2”) = F(x*) + c --. (19a) n=l dxn n !  

When (14), (15) and (18) are substituted into (19a), the matching form follows: 

f(s+-co) N - C o + ~ ~ ( [ ~ C ~ n C / C o ] ~ [ s + ~ 1 ( ~ ) k l + a 2 ( ~ )  k2+ ...I +F’(z*)) 
+ €(C/2C,[S + a,(€) k, + a,(€) k, + . . .I2 
+F’;(z*) [S+CX,(E) k1+a2(s)k2+ . . . ]+F2(  x * ) )  +O(E*),  (19b) 

where the a,, and k, remain to be found. The values of F,(z*), F;(z*) and F2(z*) 
are obtained by integration of the appropriate equations to x = z*. The analogous 
enthalpy matching form is g(s + - CO) = g,. There are no higher-order corrections. 

Outer layer 

The outer system may be written explicitly by combining (6) and (16) into the 
form 

(20a-c) 1 f” +ff” + (sC/g, - “/g,C2 + . . .) (g -f’2) = 0, 

g” +fg’ = 0, 

f(s = 0) = 0, f’(S -+ co) = g(s -+ co) = 1. 

Substitution of the relevant asymptotio expansions defined in ( S b ) ,  and the 
gathering of like-order terms, leads to a hierarchy of systems which describe 
the shear layer. The lowest-order system is: 

f(y+fofo” = 0; f;(co) = 1, fO(O) = 0; (21a) 

d + f o g ;  = 0; go(m) = 1; (21b) 

(21c) 

for this system, the matching conditions in (19 b )  imply that 

f o b  --f - co) = -Go, go@ + - co) = g,, 

where the approach to the asymptotic value is exponentially fast. The stream 
function fo(s), identical to that of Lock‘s mixing layer, and the enthalpy dis- 
tribution go, must be developed via numerical computations, the form of which 
have been described by Lock (1951), Kassoy (1970) and Libby I% Kassoy (1970). 

The structure of the matching condition in (1 9) implies that the first correction 
in the outer layer must be O(d) .  Hence, if v1 = €4 (and it should be noted that the 
largest pressure effect is O(s)) ,  then the first-order equations and boundary 
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The solution to the first-order stream-function equation and boundary con- 
ditions (discussed by Stewartson 1964; Kassoy 1970) is 

where C, is an integration constant, and r a dummy integration variable. The 
asymptotic form of f,, 

fl(s -+-a) N C, -- (s+sh+O(s2ecos)) , (24) [ A 1 
where 3 = 2.337 must match with the O ( d )  term in (19b). It follows from com- 
parison of the O(s) terms that 

(25a) 

a,(€) = 1, k, = sh-F1(z*)/(2C1n (C/C,))t .  (25b, c) 

C, = - C@Cln (C/Co))S, 

and, from the 0(1) terms, that 

The latter formulae arenecessary, because, in general, s  ̂ + Fl(2*)/( 2C In (C/Co))a. 
It should be noted that, if the matching condition were written more formally in 
terms of an intermediate variable, the exponential terms in (24) would become 
transcendentally small in the parameter. 

The first-order enthalpy system is completed by using the matching form to 
show that g,(s -+ - co) = 0, implying the necessity of exponential decay which 
is compatible with the equations. Here again the full solutions may be obtained 
by numerical integration. 

One may now proceed to the second correction to the outer flow, in which the 
weak pressure gradient finally influences the mathematical structure. Both the 
O(s)  term in the matching oondition, and that in the basic outer equation imply 
that v2 = E ,  so that the second-order equations and boundary conditions are 

] (26a, 6 )  
f/ +fo& + f 2 2  = -!if';- (C/gd (90 --fA2), fa0O) = fZ(0) = 0, 

9; +fo 9;; = -fig; - f i g ; ,  gz(m) = 0. 
The complete solution to (26a) could be constructed in quadrature form from 

the known homogeneous solutions and variation of parameters. In  symbolic form, 

(27) 
where f iP(s )  is the particular solution. In  the asymptotic sense, s +- 00 the 
term in brackets is O(s), while!; = O(eCoS). According to (19b), 

f2(s -+-a) = (C/2C0) s2+ O(s) 

implying that the leading asymptotic term in f2~(s) must be O(s2). This re- 
quirement can be verified by using the asymptotic form of (26a), 

f; - C,f;+ O(e'70sf2) = - C +  0 ( ~ 3 e c o s ) ,  

from which it follows that f 2 ( s  -+ - 00) N (C/2C0) s2 + O(s). One could, of course, 
oarry out the full second-order matching by calculating the fuller asymptotic 
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form of (27). A procedure, similar to that used in the first-order matching, implies 
that a, = €4, and would give numerical values for C, and k,. The details, of 
immense algebraic complexity, add little to  the fundamentals of the problem, 
and will not be discussed. 

4. Interpretation 
The wall-layer solution describes a basically rotational inviscid flow, in which 

the source of vorticity is the wall (the conditionf"(0) = E ) ,  as has been discussed 
by Lighthill in Rosenhead (1963, ch. 5). The relatively weak pressure gradient 
,8 = O(E)  (see (16)) acts over a relatively large distance 7 = O(e-&), to turn the 
injected fluid slightly. The solution in the wall region, where the enthalpy is 
constant, is valid to q* = x*/e*, at which point f (q*)  N -C,+O(e6), and 
f ' ( ~ * )  = O(e4). An examination of the functional relationship between x* and 
C leads to the conclusion that, for a given 6, 7" increases (decreases) with in- 
creasing (decreasing) values of C. It is to be expected that increasing the blowing 
rate will thicken the inviscid layer. On the other hand, should C + C, for a 
given E ,  it  may be observed that z* + 0, causing the wall layer to vanish. This 
result implies that the analysis fails because it is predicated upon the assumption 
of a thick inner layer, In  fact, it is possible to show that, so long as In C/C, 9 E ,  

the solution is valid. 
On the other hand, one can also consider the hard blowing limit C -+ 00, for 

which it is found that z* N (7rC/2)* (1 + O(C-iln-* C)), or, in the 7 plane, that 
q* (nC/2e)*. If the e dependence is replaced by /3, using (16), it follows that 
q* (7rC2/2/?gw)* = O(C) with respect to the limit C --f 00. This result implies 
that for a fixed pg,, the extent of the wall region is linearly proportional to C, 
which is identical to the hard-blowing analysis, as may be seen in appendix A. 
A further comparison of the present results with the hard-blowing calculation 
follows from considering the latter for /3 4 1 and the former for C -+ co. The first 
integral of (A 3 a), and the relevant co-ordinate transformations, imply that 
f'(q) [2/3gulnC/lfl]*, which is identical to the result found from (14b) with 
the appropriate transformations, the use of (IS), and the limit C + a. Hence, 
the present solution gives a natural transition to the hard-blowing result when p 
is assumed to be small. 

Beyond x* lies the thinner shear layer, in which viscous effects are pre- 
dominantly responsible for the remaining transition to the external flow, and 
in which all the enthalpy variation occurs. Lock's mixing layer describes the 
basic stream function with pressure gradient effects entering as a second-order 
correction. Equations ( 5 ) ,  (7), (9), and the results of the analysis, indicate that 
the dividing streamline defined by f(s = 0) = 0 is located in the q plane at  

= (x*/e*)+k, = q*+k,.  Hence, the 'shifting' constant k, (see (25c)) may be 
interpreted as the distance in the q plane between the outer edge of the wall 
region and the origin of the shear layer. By using the functional relation for x* ,  
and (IS), one may write 

9 = C(n/2/?gw)+ erf (In4 (C/C,)) + k,, 
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in which the error function is a weak function of C. Hence, for a specified small ,8 
(rather than 6) the location of the dividing streamline is almost linearly pro- 
portional to C. 

5. Numerical results 
Some verification of the analytical procedure may be obtained by comparing 

the results with those of numerical computation. To this end, the system in (1) 
was numerically integrated for several combinations of /3, g,, and C > C, such 
that e - /3gw/C < 1. Table 1 contains the wall-shear values found from (17), 
and those computed. The agreement is excellent in all cases except the first and 
fifth. Here the accuracy of numerical computation is to be doubted, because 

f "(0); 
C P g, equation (17) 

0.9 0.01 0.1 0.001 1 
2-0 0.2 1.0 0.1013 
2.0 0.5 0-5 0.1280 
2.0 0. L 1.0 0.0501 
2.0 0.1 0.1 0.0051 
4.0 0.3 2.0 0.1501 
4.0 0.5 0.5 0.0630 

f "(0) ; 
num. 

0.00176 
0.1009 
0.1251 
0.0508 
0.0039 
0.1501 
0.0625 

A t 7;  num. 

7-93 8.15 
5.68 5-71 
5-47 5-48 
7.82 7.84 

21.31 22.05 
6.99 7.05 

10.98 11-12 

TABLE 1. Comparison of analytically and numerically obtained values of 
wall shear and dividing streamline location. 

the combination of parameters imply that the flow field, being extremely close 
to blow-off, contains vanishingly small derivatives near the wall, which the com- 
puter cannot handle adequately. A second comparison involves the location of the 
dividing streamline in the 7 plane. Here again rather nice agreement is obtained. 

6. Conclusions 
The foregoing analysis indicates that incipient blow-off phenomena can occur 

for flows with specified small favourable pressure gradients and modest values 
of injection. Of particular practical interest is the conclusion that the heat 
transfer vanishes completely under the prescribed circumstances. 

The problem has been modelled in terms of an inviscid rotational wall layer, 
and a thin viscous layer. It must be emphasized that the pressure effect, of 
secondary importance in the shear layer, is the essential feature of the wall 
layer. Without it, solutions are limited to C < C,,. In  a related problem, Inger 
(1969) has noted that ". . .the presence of even a small axial pressure gradient 
may have a profound effect on the basic mathematical structure of any solution 
one would seek to construct using matched inner-outer asymptotic expansions". 
It should also be realized that the viscous layer (although relatively thin) 
cannot be treated as a discontinuity in the present problem. In  contrast to several 
massive blowing calculations based on a purely inviscid model with a slip stream- 
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line representing the collapsed shear layer (Pretsch 1944; Watson 1966; Cole 
& Aroesty 1967; Wallace & Kemp 1969), the present work features the thin 
mixing layer as a transition between the inviscid rotational layer and the 
external flow. Direct matching of the wall and external flow is not possible. In  
this regard, it is notable that in Cole & Aroesty (1967) it  is found that the 
inviscid massive blowing model does not lead to complete solutions for certain 
types of power-law distributions of injection. The singularity arising in these 
cases precludes the possibility of a direct matching of the two inviscid layers. 
Thus, Cole & Aroesty (1967) state that a "calculation of a free shear layer 
requires further discussion". It would appear judicious to employ the present 
approach in those problems. 

According to the transformation in (3), the wall region has a characteristic 
thickness in the q plane of O(a-i). Then, from q = y/(2x)*, where y = y'Re&/L, 
y' is the physical transverse co-ordinate, and L is a characteristic longitudinal 
length, it follows that y'/L = O(l/atRe*). For a sufficiently small wall shear, 
the classical boundary-layer approximation fails. The analogous result for the 
hard-blowing calculation in appendix A is y'/L = O( l/eRe*), while for the blow-off 
problem of Kassoy (1  970) the result is y ' /L  = O(ln (l/s)/Re*). For a given Reynolds 
number, the former has a characteristic dimension much larger than that of the 
present work, in contrast to the latter, which is relatively thinner. The failure of 
boundary-layer theory in all three cases for the limit E --f 0 implies that a new 
distinguished limit of the full describing equations is necessary to help provide 
a solution uniformly valid in the limit Re -+ m, in which the wall shear is small. 
In  appendix B an example of the relevant systems of equations for incompressible 
flow has beenderivedfor boundary-layer type injection v'/Um = O(Re-t) and small 
wall shear. It is found that the inviscid rotational wall layer of O(Re-*) is de- 
scribed by a set of equations similar to those found by Cole & Aroesty (1967) 
in the 'blow-hard' problem. Above and adjacent to the wall layer, there exists 
a conventional shear layer of thickness O(Re-t), adjacent to the inner layer, in 
which the transition to  the external inviscid irrotational flow occurs. A specific 
solution is presented for the case v'IUm = C/(2x) t  where C > C, = 0.87574.. . . 

The author would like to express his gratitude to Paul Libby, Arthur Messiter, 
William Bush and George Inger, with whom he had numerous enlightening 
discussions. Thanks also go to T.M.Liu, and Nelson Kemp, who provided 
several numerical results. This work was partially supported by a Summer 
Research Initiation Faculty Fellowship granted by the University of Colorado, 
and by an N.S.F. grant GK-24689. 

Appendix A 

hard blowing is 
The system that describes compressible laminar boundary-layer flow with 

(A 1a-C) I f"' +ff" + p[g -f'2] = 0, 

g"+fg' = 0, 

f(0) = -c, f'(0) = 0, g(0) = g,, f'@) = g@) = 1, 
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where C $ 1, and /3 is a prescribed parameter such that 0 < /3 < 8 for present 
purposes. 

A solution is sought, valid in the limit C + co. The 7 plane is not particularly 
well suited for developing the analysis. Rather, the stretching transformation 
s = C-ly, P = C-Y, G = g is used to define a thick (in terms of 7) inner wall 
region, in which the effects of viscosity are quite weak. Application of the pre- 
ceding transformation to (A 1 a-c) will result in the system, 

(A 2a-C) I C-2F”’+FJ”f +/3[G-Ffz] = 0, 

C-’Gff + FG’ = 0, 

F = - 1 ,  F f = O ,  G = g ,  at z = O .  

The lowest-order approximation, based on the limit process, C-l+ 0 (s fixed), 

describes an inviscid rotational flow. Three prescribed boundary conditions for 
this third-order system indicate that the solution is completely specified. Prom 
(A 3 b)  the temperature in the region is Go = g, implying zero heat transfer to 
lowest order. A first integral of the momentum equation, FAz = g,[l - IPo12P], 
andtheresultingform of (A 3a), Fb = /3g,,,13’o\2P-1, indicates that the inner solution 
is useful for - 1 < Po < 0 because of the singularity at P = 0. The complete 
solution to (A 3a) in quadrature form, 

can be used to define a value so where Fo(so) = 0. Except for the isothermal case 
g, = 1, the inner solution will not satisfy the external boundary condition as 
s --f so. Even for the special case there will be a discontinuity in the derivative. 
In  general, a transitional shear layer must exist, centred around so. 

In  terms of the 7 plane, the point so is located at qo = Cs,. Hence, the shear- 
layer system may be derived formally in terms of a purely translational trans- 
formation defined by r = 7 - soC = (s - so) C. The formal equations and external 
boundary conditions are identical in form to (A l a ,  b, c) with z replaced by r .  
The inner boundary condition is replaced by a matching condition applied at 
r + - co. Formally, this condition is developed by calculating the asymptotic 
form of (A 4) for s --f so, and using the translational transformation and P = C-lf. 
It follows that the lowest-order shear-layer system is 

(A 5a-d) 

f o  = gwr, 4 9 = g,, for r+-co,l 

when g, = 1, the exact solution is trivial: go = l , f o  = r. In  other cases, numerical 
calculations are necessary. The overall results will be of course identical to those 
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of Kubota & Fernandez (1968). It is to be noted that, for the case g, > 1, the 
boundary condition in (A 5 4  suggests that velocity over-shoot occurs. Higher- 
order solutions, analogous to those of Kubota & Fernandez, may be found if 
desired. 

The lowest-order shear at the wall may be found directly from (A 3a), and 
the solution Go = g,. Hence, P,”(O) = +/3gu. It follows that the basic wall shear 
in the 7 plane isf”(0) N /3gu/C. 

Appendix B 
The results of classical boundary-layer theory for injection problems with small 

wall shear (f”(0) = 8 )  contain a non-uniformity due to the multi-limit nature of 
the problem (Re --f co, E --f 0). In  order to produce a uniformly valid solution for 
the limit Re -f 00, it is necessary to reconsider the problem in terms of a theory 
which accounts directly for the drastic thickening of the injectant layer that 
has been shown to occur. To this end we construct an interaction problem for 
uniform incompressible, two-dimensional flow past a semi-infinite flat plate from 
which fluid is being injected at  st classical boundary-layer rate O(Re4) under 
conditions which permit the wall shear to become very small. The layer of in- 
jected fluid, being thick compared to a classical boundary layer, will in effect 
induce a small perturbation on the uniform stream, with a resulting favourable 
pressure gradient, which prevents a zero wall shear condition from occurring. 

The describing equations for the external flow (potential flow with a correction), 
the inner rotational but inviscid flow, and the boundary-layer-like shear layer 
are developed for a general injection distribution. A specific solution is presented 
for the case of the similarity distribution v, = c ( 2 x ) 4 ,  associated with the Blasius 
equation in classical boundary-layer theory. 

The formal mathematical description of the problem is given by the familiar 
equations and boundary conditions, 

--Re-lV2 a 

(B la-a) 

where V2is the two-dimensionallaplacian operator,r = x2 + y2, Re is the Reynolds 
number and B(x) represents the x-wise injection distribution. In  the limit, 
Re --f 00 (x, y fixed), the reduced form of (B l a )  is the Euler equation, the injec- 
tion vanishes, and the system (B 1 a, b, d )  describes uniform flow past the flat plate. 
The displacement effect correction to  this potential flow is found by assuming 
that 

$ ( x , Y ; R ~ )  N Y+ C &,(Re) $n(x, Y), (B 2) 
n=l 

where Re-& < 6, < 1, the lower limit suggested by the fact that the inner-most 
layers will have an effective dimension larger than the usual boundary-layer 
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thickness. It follows that the stream-function correction is described by the 
system, 

(B 3) 

and a matching condition with the outer edge of the shear layer which may be 
written formally as @.,&, y -+ 0) = - @(x), where @(x) is analogous to the slope of 
the 'effective displacement body' composed of the combination of the two inner 
layers, and must be found. The specified external flow is irrotational, implying 
that V2+, =[O. It follows that a general solution may be written in integral form 
(Van Dyke 1964). Insofar as finding the pressure correction imposed on the 
inner layers is concerned, an application of the linearized Bernoulli equation 
leads to the result that 

a 
ax 
-V2@., = 0, +l(r + 00) = 0, 

'PI(", 0) = - ul(x, 0) = - - ~ , x > o  
n o  Sm @r(Y 

which describes the pressure distribution on the fictitious displacement body 
surface. The function CD(6) is found by constructing solutions in the inner layers. 

The structure of the solutions considered in the main body of the present work 
suggests that, to describe the flow near the wall, one should seek a distinguished 
limit of the Navier-Stokes equation based on the limit R e  -+ 00 which is basically 
inviscid but rotational in nature. This form will be obtained only if the trans- 
formation, ? = Re* @, 5 = Re3 y, is used in (B 1 a)  to show that 

subject to the boundary conditions, Fc(x, 0) = 0, px(x, 0) = - B(x), the reduced 
form of which is 

D -  
D , @ O z i  = O, 

which implies conservation of vorticity on streamlines and a pressure distribu- 
tion Po = jjo(x). It is noted that the correction to the basic solution q0 is appar- 
ently O(Re-*). Hence, (B 5a, b)  describes the desired type of flow in a region whose 
characteristic dimension in y = O(Re-)), thicker than the classical boundary- 
layer value, in which the shear is ordered by @u2/ = O(Re i ) ,  smaller than the 
boundary-layer value of order Re$, and the x-wise velocity u = O(Re-*). 

The lateral extent of the wall layer, and consideration of its role as the effective 
displacement body, implies that the correction to the uniform flow is specified 
by 6,(Re) = Re-). The system is quite similar to that of Cole & Aroesty (1967). 
However, unlike their result, which was developed for so-called blow-hard prob- 
lems, where v = -@x % O ( R e f ) ,  the present calculation involves classical in- 
jection rates ; v = O(Re-$). 

The problem in (B 5 )  must be solved in terms of the unknown interaction 
pressure distribution p0(x). In  general, the solution will not match directly with 
the external potential flow described by (B 1) (although in special cases, such 
as those discussed by Cole 1967, lowest-order direct matching i s  possible). Rather, 
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a classical free shear layer, whose characteristic dimension is O(Re-+), must be 
interposed between the wall and external flows, in order to provide a transitional 
flow. The equations that describe this shear layer are derived from (B 1)  by means 
of the transformation, 

z = [y - g(x; Re)] Re*, $ = Re* $, (B 6) 

in which yD = g(x; Re), and z = 0 represents the equation describing the location 
of the dividing streamline ?,b = 0 (and hence is representative of the effective 
displacement body). Consideration of the wall-layer configuration suggests that 
g = O(Re-*), with a x dependence which must be determined. Substitution of 
(B 6) into (B l a )  will lead to 

- Re-l - [ ( 1 + g‘ 2, $zz - Re-*( 29’ gXa + g“$*) + Re-l $x.J = 0, 
ax2 a2 1 

the reduced form of which (for g = O(Re-$) is the classical boundary-layer 
equation, 

Corrected potential 

2 

FIGURE 1. Flow structure: - - - - -, boundary of the viscous shear layer O(f2e- t ) ;  -, 
dividing streamline YD = g(m, Re);  inviscid rotational layer O(Re-*). 

The usual boundary conditions are replaced by matching conditions at z -+ & co, 
which may be inferred from the results of applying the limit process Re +- co 
(y fixed) to the first of (B 6) for y > yD and y < yD. The former has the form 
g0(x, z + 00) = z, which is found by matching with the external flow. The latter 
will be discussed, with regard to a specific injection distribution, shortly. 
Finally, the condition for the zero streamline, $(x, z = 0) = 0, serves to define the 
function g(x; Re). It should be noted that the shear layer described by (B 7) is 
not affected by the induced pressure gradient, which is a relatively higher-order 
effect. 
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To this point the systems describing the basic approximations in each of the 
three zones (figure 1 )  have been developed. It remains to consider specific in- 
jection distribution values, and ultimately find the pressure interaction term 
Po = P0(x) and g(x; Re). 

A similarity solution for B(x)  = C/(2x)h 

A particularly simple solution for the systems in (B 1)-(B 7) can be constructed 
for the case of a classical similarity type injection distribution. B(x)  = C/(2x)&, 
where, as we shall find, C > Co = 0.87574. The first integral of (B 5b) and the 
relevant boundary conditions, 

describe the wall-layer flow. The pressure gradient remains to be found. This 
system can be satisfied by a similarity solution defined by 

where the constant A + l,t will be found in the process of analysis. Substitution 
of (B 9) into (B 8) leads ultimately to the similarity system, 

I (1 - A)f’2-ff” = p, 
f’(0) = 0, f(0) = - c ,  

(B 10a, b)  

and a pressure distribution of the form, 

To(%) = p(2x)-‘*-”/2(A- l), (B 1 1 )  

where ,8 is a positive constant (to ensure it favourable pressure gradient), which 
must be evaluated along with A. The first integral of (B 10a) has the form, 

f‘(7) = [PlCA- 1 ) F  [fC/ -P-” - 114 (B 12) 

implying that for f+ 0- the x-wise velocity in the wall layer is singular, and 
that h > 1 .  A second integral leads to the result, 

which describes the increase in the value of the stream function from the most 
negative prescribed value at the wall with increasing 7. The form of (B 12) implies 
clearly that the solution in (B 13) can be used for at  most finite values of 7, up 
to that for whichf + 0-. As we shall see, however, the solution must be truncated 
a t  a smaller value of the independent variable, defined as 7*, which is determined 
essentially by matching with the shear-layer solution. The value of q* defines 
a surface in the 2, g plane with the equation, 9” = 7*(2x)”, on which 

ie = (2x)*f(7*).  

t If A = 1, the similarity lines are parabolas. It would follow that no pressure gradient 
correction exists. 

15 F L M  48 
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The first integral of the shear-layer equation in (B 7) can be written in the 
form 

since the induced pressure gradient cannot affect the shear layer to lowest order. 
The boundary condition at the outer edge is J0&, z -+ 00) = 1. The matching 
form with the wall-layer solution is constructed by using (B 6) and the 3, Tj 
transformations defined above (B 5u), to show that g 0 ( x ,  z --f - co) N (2x)4f(q*). 
Hence, the system of the shear layer admits the classical similarity solution 
defined by 

with the resulting similarity system, 

go = ( Z Z ) * P ( S ) ,  s = z(Zx)-B, 

P” + PP” = 0, 

(B 1 5 ~ - d )  

where the second boundary condition follows from the fact that x = s = 0 
defines the location of the dividing streamline $ = 0. This system is identical 
to Lock’s mixing layer, from which it follows that f(q*) = - C, = - 0.87574.. . . 
Hence, in principle one can calculate the value of q* from (B 13), where the 
upper limit on the integral is - C,. The resulting q*, which is smaller than that 
value of 7 for which -f -+ 0-, can be used to show that 

y* = Tj* Re-g = q*(2x)MRe-& 

is, for any given x, less than yD = g ( x ; R e )  (the dividing streamline location), 
as shown in figure 1. However, in terms of the y plane the difference (of O(1) 
in the %j plane) must be small: O(Re-3). Recalling in addition that 

g ( x ; R e )  = O(Re-+), 

the full form of the y ,  z transformation in (B 6) may be written generally as 

x = [y-q*(2x)**Re-&+ Z a,(Re)g,(x)] Re&, (B 16) 
n=O 

where a0 = o(Re-*), lim (a,+ l)/a,  = 0 for n 2 1, and the sequences a,, g, have 
to  be found in the process of analysis. The summation must be greater than zero, 
since yD > y*. 

The interaction problem can be completed by constructing the higher-order 
matching between the external and shear-layer flows. The second part of (B 6) 
can be used to show that $(x, y -+ 0)  N Re-4 $(x, z --f co), from which it follows 
that 

y + Re-) $,(x, y -+ 0 )  + . . . N Re-*(2x)*P(s -+ co) - y - Re-4 q*(22)** + o(Re-+), (B 17) 

$l.l(x, y --f 0)  - -q*(2x)hA, or that vl(x, y - f  0 )  = &,(x, y - f  0) = 7 *Ih (Zx)&f-’, so 
which is construotedfrom (B 15b), s = z(2x)-* and (B 16). Matchingrequires that 
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that the system describing the first-order external flow correction, found from 
(B 3), is 

V2$, = 0, 

$l(r -+ 00) = 0, $lz(x, y + 0) = -r*(h/2) (22)4(L-2) = - @(z), 
with the result that 

The induced pressure gradient in (B 18) is exactly that which turns the flow 
in the wall layer. Hence, from (B ll), (B 18), 

which with the transformation m = t/x becomes 
m-a dm 

/3(2z)-(”-”/Z(h- 1 )  = (q*h/2n) (2x)w-2) x > o  

where a = i ( 2  -A ) .  It follows from the 2-dependence of the result that h = $, 
so that 

where the value of the integral is 7~143. Finally, from (B 131, we find 

Hence, there are two equations for the constants P and r,+, which can then be 
obtained for any specified value C > C,. 

Finally, the wall shear and interaction pressure gradient in terms of the external 
co-ordinates are given by 

$gv(x, 0 )  = Re*(22)4 (P/C) and p ( 2 )  = Re-Q(22)-4 (3p/2). 

These results are to be compared with those found from the classical boundary- 
layer treatment of uniform flow past a flat plate with similarity type injection: 
$v&z, 0 )  = Retx-4f”(O), dp/dx = 0. One notices that the wall shear has a different 
dependenceon Reynoldsnumber. Of course, it  should be pointedout that, whereas 
the boundary-layer calculation is limited to injection values equal to at  most - C,, 
the interaction calculation is valid for only C > C,. It would appear that, to 
obtain a smooth transition between the two regions of injection, one would have 
to abandon boundary-layer theory for values of C slightly less than C,, in order 
to permit injectant layer thickness larger than O(Re-4) and increasing in 
dimension toward O(Re-4) as C passes through C,. In  other words, the singularity 
at  f(0) = - C, is a product of the inadequacies of boundary-layer theory and not 
of reality. 

1.5-2 



228 D. R. Kassoy 

R E F E R E N C E S  

ACRIVOS, A. 1962 The asymptotic form of the laminar boundary layer mass transfer rate 
for large interfacial velocities. J .  Fluid Mech. 12, 337. 

AROESTY, J. & COLE, J. D. 1967 Boundary layer flows with large injection rates. The 
Rand Corp., RM 4620. 

COLE, J. D. & AROESTY, J. 1967 The blowhard problem - inviscid flows with surface 
injection. The Rand Corp., RM 5196. 

EMMONS, H. W. & LEIGH, D. C. 1954 Tabulation of the Blasius function with blowing and 
suction. Aero. Res. Counc. Current Paper 157. 

INGER, G. 1969 Strong blowing across a Couette-Poiseuille shear flow. Phys. Fluids, 13, 
1712. 

KASSOY, D. R. 1970 On laminar boundary layer blowoff. S I A M  Appl. Math. 17, 24. 
KUBOTA, T. & FERNANDEZ, F. 1968 Boundary layer flows with large injection and heat 

transfer. AIAA J .  6, 22. 
LIBBY, P. A. & KASSOY, D. R. 1970 The laminar boundary layer at an infinite swept 

stagnation line with large rates of injection, AIAA J .  8, 1846. 
LOCK, R. C. 1951 The velocity distribution in the laminar boundary layer between 

parallel streams. Quart. J .  Mech. Appl. Math. 4, 42. 
MOORE, F. K. 1964 Theory of Laminar Flows. High Speed Aerodynamics and Jet Pro- 

pulsion, vol. 4. Princeton University Press. 
NICKEL, K. 1958 Mass transfer in boundary layer theory. Arch. Rat. Mech. Anal. 2, 1. 
PRETSCH, J. 1944 Analytic solution of the laminar boundary layer with asymptotic 

ROSENHEAD, L. (ed.) 1963 Laminar Boundary Layers. Oxford University Press. 
SCHLICHTING, H. & BUSSMAN, K. 1943 Exacte Losungen fur die laminare Grenzschicht 

STEWARTSON, K. 1964 Falkner-Skan equations for wakes. A I A A  J .  2, 1326. 
VAN DYKE, M. 1964 Perturbation Methods in Fluid Mechanics. Academic. 
WALLACE, J. & I(Em, N. 1969 Similarity solutions to the massive blowing problem. 

A I A A  J .  7, 1517. 
WATSON, E. J. 1966 The equation of similar profiles in boundary layer theory with strong 

blowing. Proc. Roy. SOC. A 294, 208. 

suction and injection. Z A M M ,  24, 264. 

mit Absaugung and Ausblasen. Schr. dtsch Akad h f t j ahr ,  7B. 


